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This paper examines the problem of the survival of Salter’s duck wave-energy device 
in extreme waves, both experimentally in a narrow tank a t  Edinburgh University and 
theoretically, using programs originally designed to study nonlinear ship motions 
(Vinje & Brevig 1981). Both approaches are essentially two-dimensional, corresponding 
to waves normally incident upon the duck string, and comparison of the two sets of 
results for SL duck on a fixed axis shows good agreement. 

1. Introduction 
Over the last decade a lot of interest has centred on the possibility of extracting 

energy from ocean waves. A number of devices have been developed in Britain and 
elsewhere (see e.g. Cottrill 1981) that can be dividedinto three categories: (i) termina- 
tors - devices that absorb energy from beam seas; (ii) attenuators - devices that 
absorb energy from head seas; (iii) point absorbers - devices that couple to a wave- 
frontage larger than their geometric cross-section. In each category the device may 
be either submerged or surface-piercing; and, since each device has its own merits 
and drawbacks, it is not yet clear which, if any, of the devices will prove to be 
economically viable. However, one of the most promising and most developed of the 
devices is Salter’s duck (see figure l),  which belongs to the terminator class of surface- 
piercing devices. Such devices have special mathematical and experimental appeal, 
since the main features of their behaviour may be deduced from two-dimensional 
analysis or testing in a narrow tank. 

From the hydrodynamic point of view there seem to be two main problems in wave 
energy : efficiency under normal operating conditions and survival under extreme 
conditions. The first problem has received considerable attention for all three cat- 
egories of device; for the duck, experimental values of the efficiency over a wide range 
of mixed sea states have been determined when the duck is controlled in all three 
modes of motion, nod, heave and surge (see Edinburgh Wave Power Project 1 9 7 8 ~ ;  
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FIGURE 1. Duck geomet>ry and nodal-point distribution ( x ). 

Salter 1979; Greenhow 1980a). Corresponding theoretical results using linearized 
hydrodynamics and a hybrid finite-element scheme have been published by Mynett, 
Serman & Mei (1979) and extended by Greenhow (1981), where the comparison with 
experiments in small monochromatic waves was good. 

As the wave height increases, nonlinear effects become important, and the efficiency 
of the device will fall in general. This complicated effect has at least three components: 

(i) turbulent flow around the beak of the duck; 
(ii) nonlinearity in the buoyancy-restoring force in the nod mode; 
(iii) nonlinear hydrodynamic effects resulting in second-harmonic wave generation. 

These effects have been studied by Greenhow (1980b) where it was shown that the 
first two effects can be avoided by adding more freeboard to the duck (see figure 1). 
The improvement in efficiency in the larger waves is very encouraging, and the extra 
freeboard also simplifies the full-scale design. A further advantage is that we no 
longer have the sharp beak to contend with in the numerical scheme described below. 

The problem of survival in extreme waves, where efficiency is of no consequence, 
does not appear to have been resolved for many of the devices; most designers envisage 
submerging their devices to avoid the large slamming forces associated with wave- 
breaking (see Lighthill 1980) and theoretical work by Brevig, Greenhow & Vinje 
(1981, 1982) has examined the extreme wave forces on a number of submerged de- 
vices. If, however, a surface-piercing device is allowed to yield to the wave, the forces 
may be considerably lower than for a fixed device. For the duck this is achieved pri- 
marily by capsize, the centre of gravity being chosen so that the duck will recover its 
operating position after the wave has passed. Model tests, conducted in a narrow tank 
a t  the University of Edinburgh in 1978, are here described for a duck on a fixed axis. 

Although Longuet-Higgins ( 198 I )  has made considerable progress with developing 
an analytic model of a breaking wave, the analysis of the duck/extreme-wave inter- 
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action is undoubtedly very complex. We therefore extend the numerical nonlinear 
time-stepping scheme of Longuet-Higgins & Cokelet (1976) to  study this case for a 
duck in finite-depth water, using programmes originally developed for ship-motion 
problems by Vinje & Brevig (1981). Comparison of the wave-only problem, with no 
body in the water, and the experimental extreme wave in the model tests has already 
been made (see Brevig et aE. 1981). Further, McIver & Peregrine (1981) compare the 
results of the present method for a breaking wave (see Vinje & Brevig 1 9 8 0 ~ )  with 
the results of Longuet-Higgins & Cokelet (1976) and find good agreement. This paper 
compares the nonlinear wave and duck motions of the theoretical and experimental 
results until the wave breaks, and provides a useful check for further work on ship- 
capsize problems. 

2. Details of the experiments 
The experimental work took place in the Edinburgh Wave Power Project’s ‘narrow 

tank’, using a 10 cm diameter model and an ‘absorbing’ wavemaker controlled by a 
digital computer. The tests were designed to analyse the response of a model Salter’s 
duck to  a deep-water plunging breaker with a steepness ratio of 4.6 to 1. As well as 
directly measuring model motion and forces transmitted to the support linkage, a 
series of photographic sequences illustrated the relative motion of model and water. 

The equipment 

The tank was 9.14 m long by 0.3 m wide, and with a water depth of 0.6 m. The model 
(symmetrical profile, 10 cm stern diameter, 12 cm axis to nose) was ballasted and 
trimmed as for energy-extraction experiments. At an axis depth of 6.5 cm and with 
the centre of gravity below the line of symmetry it recovered unaided from backward 
capsize. The model was supported by the ‘surging-heaving rig ’, an apparatus allowing 
easy variation of compliance, damping and inertia separately in the vertical and 
horizontal planes, by physical and electronic control. For the tests discussed here, 
the rig was locked to provide an unyielding model axis. However, strain gauges 
attached to the rig linkages provided measurements of the forces transmitted between 
this and the fixed reference. 

The wavemaker was of the ‘absorbing’ type (Salter 1978), utilizing force and 
velocity feedback, and was able to reproduce large-amplitude wave sequences with 
excellent repeatability in conditions of significant reflection from the model (see 
figure 5 ) .  A Plessey ‘Miproc’ computer drove the wavemaker through a digital-to- 
analogue converter ‘ sample-and-hold ’ circuit, current amplifier and DC motor. The 
sampling rate was 20 Hz and the drive was computed as the instantaneous sum of 
32 equal-amplitude sinusoidal components with linear frequency increments in the 
range 0.66-1.27 Hz, each being a submultiple of the computer clock frequency. The 
phase of each sinusoidal component, a t  start-up, was calculated so that the crests of 
each of the tank wavetrains would coincide a t  the nominal model position, a chosen 
time after start-up (usually 10 s). This technique of producing a very steep wave by 
linear superimposition requires precise knowledge of the wavemaker transfer function. 

Behind the model, a t  the other end of the tank, a vertical wedge of densely packed 
‘ Expamet ’ (perforated aluminium foil) acted as beach. 

Before positioning the model, wave measurements were made a t  the axis position 
using a compensated conductivity probe. 
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FIGURE 2. Nodal-point distribution for numerical scheme 

(typically N 1  = 60, N 2  = 75, N 3  = 85, N = 110). 

Photography 

The good repeatability of the system allowed photographic sequences to be compiled 
from separate stills taken singly on different runs of the wave each time with an 
increasing delay after start-up. We used a conventional 35 mm camera with an 
electrically operated shutter. 

To freeze motion, electronic flashlights were used for illumination. These had flash 
durations of less than 2 ms. Three of them illuminated the wave from below, through 
the glass bottom of the tank (an invaluable aid in showing up the meniscus) and two 
lit the model from near the camera position. 

The camera and lights were controlled by a timer which was set by a computer 
signal a t  start-up. This supplied a light control pulse, which was accurate to 1 ms, 
and it provided an earlier pre-trigger signal to the camera shutter, ensuring that it 
was open in time for the exposure. 

3. Mathematical formulation 
As mentioned in 3 1 this work is an extension of the numerical scheme described by 

Vinje &, Brevig (1981), and consequently we confine ourselves here to an outline of 
the theory only. I n  that paper it was pointed out that for highly transient problems 
like wave-breaking and capsize it suffices to examine an initial-value problem with 
the wave profile specified only over a small number of wavelengths (typically one or 
two wavelengths). If the initial conditions are properly chosen then we may apply 
periodicity in space to enable the entire semi-infinite fluid to be treated nonlinearly, 
rather than matching the wave a t  the boundary to an incident linear wave (see figure 2). 

We treat the problem in a mixed EulerianILagrangian description by following the 
fluid particles forward in time, except along the body, where a modified Lagrangian 
description is used that follows points fixed to the body surface. Under the usual 
assumptions of homogeneous, incompressible and irrotational flow we may admit the 
two-dimensional complex velocity potential : 

(3.1) 
where z = x+iy, and q5 and @ are respectively the velocity potential and stream 
function. 

P ( Z ,  t )  = w, y; t )  + w x ,  y; t ) ,  
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The initial values are specified by the velocity potential and elevation on the free 
surface and the position and velocity of the body (see 6 5) .  Since p(z,  t )  is analytic in 
the fluid domain, then Cauchy’s theorem is valid: 

where C is a closed contour consisting of the wetted body surface, the bottom, the free 
surface and two vertical boundaries over which periodicity is applied. zo is a point 
situated outside the contour C. 

Evidently applying periodic boundary conditions cannot be entirely correct, since 
reflection from the duck will not be accounted for properly. We argue that, since the 
wave-breaking to be examined is a highly transient problem, the local field around the 
duck may not be significantly affected by the periodicity before the wave breaks and 
the theory becomes invalid. 

The contour C is assumed to consist of two parts: C,, where $ is known, and C+, 
where @ is known. This gives rise to two Fredholm’s equations of the second kind: 

a@(xo, yo, t )  + ~f = o 
c 2 - 2 0  

for xo E C,, and 

d2 = 0 $+i@ 
c 2 - 2 0  

for z0€C+. Here a is the angle between the two tangents of C at zo (equal to 7~ for any 
smooth part of C). 

On the free surface $ is given as an initial condition, and hence this is part of C#. 
The bottom forms a streamline, and accordingly is part of C,++. On the vertical boun- 
daries both $ and @ are unknown, but the periodicity requirement provides the 
necessary additional equations needed to solve the system. For a duck on a fixed axis, 
Vinje & Brevig (1980b) give the value of $ on the wetted surface as 

$ = -geg*, (3.5) 
when 19 is the nod angle measured in the anticlockwise direction and E is the co- 
ordinate of the point on the body measured with respect to axes a t  the centre of 
rotation (equal to the centre of gravity for ships but not for ducks). Thus according 
to (3.5) the wetted body surface forms part of C9. 

To step forward.in time we notice that since ap/at is also an analytic function in 
the fluid domain then (3.3) and (3.4) will be valid with a$/at and a$/at replacing $ 
and $ respectively. On the free surface we have the kinematic boundary condition 

D2 
- = u+iv = w*, 
Dt 

which yields the new surface elevation. The dynamic boundary condition 

gives the new value of $ on the free surface. In  the above equations 

o(, = a ( + V $ . V ( )  
Dt at 
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is the material derivative, (u, v)  is the velocity of the particles, g is the acceleration 
due to gravity, p is the density of water and P, is an arbitrary applied pressure which 
is set equal to zero in this paper. Also 

gives the fluid-particles' velocities. 
To evaluate the pressure and hence the forces on the body we use 

(3.10) 

and hence we need to  know a$/at on the body, which requires solving Cauchy's equa- 
tion for a,8/at. On the free surface we have 

-- P = 2 + f w w * + g y ,  
P at 

- =  -fww*-gy, 
at 

(3.11) 

whilst on the bottom a$/at is known, and periodicity is again used on the vertical 
boundaries. This leaves a$/at to be calculated on the body, for which Vinje & Brevig 
(1981) give the formula 

(3.12) 

for a duck on a fixed axis. We see that the unknown acceleration 8' has been factored 
out, and we proceed to solve the compound problem 

(3.13) 

on the body (the notation is chosen to correspond to that of Vinje & Brevig (1981)). 
Comparison of (3.12) and (3.13) yields &k3/at  and a$,/at on the body, whilst on the 
free surface a$,/& = 0, and a$,/at is given by (3.11). Solving Cauchy's equation for 
the two component problems gives the total solution as 

ap = a p 3 J + a p ,  

at at at 
(3.14) 

Substituting the solutions of ap3/at and a,8,/at into (3.10) gives the pressures p 3  and 
p 4  associated with each potential, where 

2 PWW" - PSY. 
p - - p - - '  844 ,- at 

(3.15) 

Integration over the body surface then yields the equation of motion for a duck of 
inertia I and mass m, as 

from which the acceleration can be found. Here CG is the position of the centre of 
gravity relative to the position of the centre of rotation. We use the solution of (3.16), 
(3.6) and (3.7) to step forward in time, giving the new body velocity, free-surface 
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elevation and velocity potential on the free surface. This establishes a new set of 
initial conditions for the new time from which we can solve for the complex velocity 
potential ,4 and repeat the process described above. 

4. Numerical solution 
To solve Cauchy's equations for ,8 and ap/at we assume a linear variation of these 

functions between the nodal points on C shown in figure 2. The influence function of 
these variables at the point z is therefore 

(4.1) I A,(z) = 3 for z on C between zi and 

R ~ ( z )  = ___ for z on C between and xi, 

zj -%+1 

z - zj-1 

z j  - zj-1 

and zero elsewhere on C. Introducing this influence function into Cauchy's equation 
(3.2) gives the following matrix equation : 

(4.3) 

an approximation that reduces the cost of running the program by about 40%, 
whilst the accuracy is not significantly affected. We choose el = 0.2 until any part 
of the wave profile becomes vertical when el = 0.1. Otherwise we use the exact expres- 
sion of (4.3). 

To ensure that we obtain Fredholm integral equations of the second kind we rewrite 
(4.2) as 

when z k  is on C,, and 
N w i c rkipi = o ( i=1 I (4.7) 

when zk is on C ~ .  
When zk is on the vertical boundaries then 9 and $ are both unknown. We can, 

however, sum appropriate rows in the matrix equations (4.6) and (4.7) (row k and its 
corresponding row on the other vertical boundary). Using the assumed periodicity 
of the solution, we thus eliminate some of the unknowns, achieving the correct num- 
ber of equations. We obtain a set of equations of the form Ax = b, where A depends 
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( U )  

FIGURE 3 ( a ) .  For caption see opposite. 
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l b )  

FIGURE 3. Time progression of the experimental breaking wave. At full scale the tick marks 
on the axes indicate 10 m intervals, and the time between successive photographs is 0.816 s. 
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( U )  

FIGURE 4 (a) .  For caption see opposite. 

only on the shape of the control surface and therefore can be retained for calculating 
the complex-potentiaI derivatives and ap,/at. 

To find the fluid velocities w given by (3.9), ,8 is differentiated using a second-order 
central-difference scheme. The free-surface elevation, velocity potential and body 
velocity are stepped forward in time using the Runge-Kutta method for the first 
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( b )  
FIGURE 4. Duck capsize in breaking wave and recovery. 
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FIGURE 5. Repeatability ; three separate runs have been photographed 
at the same instant. 
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FIGURE 6. Wave and force measurement for undamped duck on fixed axis scaled to 

full-sized 10 m rear duck diameter. Arrows indicate maximum absolute values. 
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FIGURE‘ 7. Computer simulation of duck capsize in non-breaking wave. 

three time steps, after which we use Hamming’s fourth-order predictor-corrector 
method which utilizes information from the previous three time steps. The necessary 
time derivatives are furnished respectively by (3.6)’ (3.7) and (3.16). 

For surface-piercing bodies we have a particular problem with the points of inter- 
section of the free surface with the body. Depending upon the angle of intersection 
of the body and free surface, the velocity w may be singular. Another possibility is 
that  the gradient of $ along the body does not match the gradient of $ on the free 
surface, causing a weaker type of singularity. Furthermore, even in the absence of 
any singularity the gradient of the velocity field may become large, making the 
numerical solution difficult. In  the absence of any satisfactory answer to these prob- 
lems we appeal to the visual evidence of the photograph sequence of figure 8. It 
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((0 
Fraum 8 (a). For caption see opposite. 
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( b  ) 
FIGURE 8. Comparison of experimental and theoretical results for duck capsize in breaking 
wave up to the point of breaking. (We suggest superposing two Xerox transparencies of these 
results for comparison.) 

would seem that for the duck-capsize problem a good algorithm for calculating the 
position of the point of intersection is to draw a straight line from the neighbouring 
point on the free surface to the centre of rotation. The intersection point thus generated 
is regarded as being on C9 for the calculation of the complex velocity potential, rather 
than on C,. 

From the point of view of the numerical solution it is vital to ensure that the nodal- 
point spacing along the free surface does not change too rapidly in space. Therefore 
it is sometimes necessary to  remove or introduce points a t  certain times during the 
calculation. When points are introduced a linear variation in position and velocity 
potential is assumed between the neighbouring points. 

5. Results and discussion 
For comparison with figure 4, figure 3 shows the narrow-tank extreme wave used 

in the experimental tests without the duck in the water. A comparison of this wave 
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with a corresponding theoretical wave has been made by Brevig et al. (1981), where 
the agreement between the time progression of the two waves is fair, the differences 
being due to the method of generation of the experimental wave differing from the 
sinusoidal wave used as the initial condition for the theoretical wave. In  this paper 
we present more realistic initial conditions suggested by the start of the photograph 
sequence shown in figure 4. Here the duck has been positioned in the water a t  the 
nominal breaking point of the wave (as if the duck were absent) and held on a fixed 
axis. The sequence shown in figure 4 is in fact made up from separate runs of the 
wave, taking one photograph per run. This requires good repeatability of the wave 
profile, which is demonstrated by comparing the photographs of figure 5 where three 
separate runs are photographed a t  a particular instant. 

From a series of extensive tests undertaken a t  the University of Edinburgh in 1978 
(see Edinburgh Wave Power Project 39783) we know that an undamped duck on a 
rigid axis will have higher angular velocities, and consequently greater angular dis- 
placements than those of ducks on a compliant axis. Therefore we regard the un- 
damped duck on a rigid axis as a good check for the theory. 

Figure 6 presents measurements of the wave profile without the duck, and the 
forces on the axis in the heave-and-surge direction. The sign convention is positive 
upwards for heave, positive opposite the wave direction for surge, and positive anti- 
clockwise for nod. 

Before we start the time-stepping we need to provide the following initial conditions: 
wave elevation and velocity potential on the free surface, and position and velocity 
of the body. In principle it should be possible to start the body from rest in locally 
calm water with an incident wave some distance from the body; in practice this would 
require prohibitive amounts of computer storage and time to run a wave break. We 
therefore obt,ain initial conditions from the photographs just before the wave break 
as described below. 

Figure 7 shows theoretical results for initial conditions as follows: the centre of 
gravity, mass and moment of inertia are taken from experimental data; the initial 
displacement and velocity is taken from the photographs (6 = 0 ) ;  behind the duck 
the wave elevation and velocity potential are taken to be zero; the incident wave is 
given from linear theory for deep water waves (wavelength 110 m, crest-to-trough 
height 20 m and water depth 60 m, corresponding closely to the experimental wave); 
a t  distances greater than 2 wavelength from the duck the elevation and velocity 
potential on the free surface is decreased linearly with distance to zero a t  2 wavelengths 
from the duck. Thus we are able to apply periodic boundary conditions over this 
control volume. Returning to figure 7, we see that the duck capsizes fully during the 
sequence, and the numerical solution breaks down because the duck submerges. 
Comparison with the sequence of photographs of figure 4 shows that the duck velocities 
and positions look correct, but the wave profile generated by the above initial con- 
ditions is incorrect and does not lead to the spilling breaker seen in the experiments, 
but rather simulates duck capsize in large but non-breaking waves. Furthermore, the 
sharp corners in the free surface are almost certainly due to the numerical scheme 
used, and more especially to the placing of the point of intersection of the body and 
the free surface. 

We refine the initial conditions as shown in figure 8, where the control volume length 
is increased to 1 wavelengths, and the linear decrease is applied both behind and in 
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FIGURE 9. Dynamic axis forces and duck moment for capsize in breaking wave: 
-, theory; - - - , experiment. 

front of the crest. This wave profile corresponds closely to the experimental wave 
profile in the region of the duck, and a comparison of the theory and experiments is 
shown in figure 8 as the wave progresses up to the point of breaking. The overall 
agreement is excellent, although a slight discrepancy in the duck position arises a t  
the end of the calculation, the theory giving larger duck angular displacements than 
the experiment. Possible causes for this are numerical inaccuracy in the force calcu- 
lations, choice of initial conditions and the extra freeboard added in the theory, and 
spray formation, turbulence and friction in the experiments. With regard to the free- 
surface elevation i t  is not clear where green water ends (the theoretical free surface) 
and spray begins in the later stages of the wavebreak. We conclude that the agreement 
is about as good as we can expect from the theory, which leaves out spray formation. 

Finally, a comparison of the theoretical and experimental vaIues of the forces on 
the axis is given in figure 9, whilst figure 10 gives the angular displacements, velocities 
and accelerations. The comparison of t’he forces is quite good until just before the 
wave break, when the theory becomes unreliable. Despite this, the angular displace- 
ments, which are smoothed over time, may still be fairly accurate. (The fast oscilla- 
tions in the experimental forces shown in figures 6 and 10 are due to vibration in the 
rig, and are not hydrodynamic in origin.) It is natural to ask whether the forces cal- 
culated from linearized theory by Mynett et al. (1979) have any validity in breaking 
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FIGURE 10. Angular displacement, velocity and acceleration for capsize in breaking wave. 

waves. We would regard a comparison of the two sets of results as misleading, since 
the linearized theory deals with steady-state forces, whereas the present theory relies, 
through the assumption of periodicity, on the highly transient nature of the problem. 
Work is currently under way to replace the periodicity condition with a vertical 
boundary condition that matches to an incident wave, whereby a nonlinear steady- 
state solution could be approached for comparison with linearized theories. 

6. Conclusion 
The behaviour of Salter’s duck in waves of extreme steepness in a narrow tank has 

been photographed, and the axis forces have been measured. From these measure- 
ments the Edinburgh Wave Power Team has concluded that it is possible to engineer 
a duck that will survive storm conditions off the coast of Scotland and elsewhere. 

A two-dimensional theory has been developed giving excellent agreement with the 
model tests up until the point of wave-breaking. We expect that computer simulations 
of this type could be a useful tool, not only in the study of the survival of terminator- 
type wave-power devices, but also for nonlinear ship motions and capsize in beam seas. 

A large amount of the programming used was developed under the ‘ Ships in Rough 
Seas’ project sponsored by The Royal Norwegian Council for Industrial and Scientific 
Research (NTNF), the Norwegian Fisheries Research Council and the Norwegian 
Maritime Directorate. One of us (M. G.) wishes to thank NTNF for financial support 
during this research. The experiments were conducted as part of the Edinburgh 
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University Wave Power Project sponsored by the U.K. Department of Energy. 
Finally we would like to thank Mr Stephen Salter for his helpful comments and 
discussions. 
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